121 research outputs found

    Detailed analysis of the cell-inactivation mechanism by accelerated protons and light ions

    Full text link
    Published survival data for V79 cells irradiated by monoenergetic protons, helium-3, carbon, and oxygen ions and for CHO cells irradiated by carbon ions have been analyzed using the probabilistic two-stage model of cell inactivation. Three different classes of DNA damages formed by traversing particles have been distinguished, namely severe single-track damages which might lead to cell inactivation directly, less severe damages where cell inactivation is caused by their combinations, and damages of negligible severity that can be repaired easily. Probabilities of single ions to form these damages have been assessed in dependence on their linear energy transfer (LET) values. Damage induction probabilities increase with atomic number and LET. While combined damages play crucial role at lower LET values, single-track damages dominate in high-LET regions. The yields of single-track lethal damages for protons have been compared with the Monte Carlo estimates of complex DNA lesions, indicating that lethal events correlate well with complex DNA double-strand breaks. The decrease in the single-track damage probability for protons of LET above approx. 30 keV/μ\mum, suggested by limited experimental evidence, is discussed, together with the consequent differences in the mechanisms of biological effects between protons and heavier ions. Applications of the results in hadrontherapy treatment planning are outlined.Comment: submitted to Physics in Medicine and Biolog

    Synergism between entomopathogenic nematodes and Bacillus thuringiensis crops: integrating biological control and resistance management

    Get PDF
    Summary 1. The past decade has witnessed a continual increase in the use of crops genetically modified to produce insecticidal toxins from the bacterium Bacillus thuringiensis (Bt). This presents the challenge of designing agricultural systems to manage pests and the evolution of resistance to Bt. 2. We tested whether entomopathogenic nematodes might act synergistically with Bt crops by killing pests in non-Bt refuges and by increasing the fitness costs of resistance to Bt. We also tested whether insect mortality and fitness costs were affected by the cotton phytochemical gossypol. 3. The entomopathogenic nematode Steinernema riobrave increased the fitness cost of Bt resistance, indicating that its presence in refuges may slow pest adaptation to Bt crops. No effect on fitness costs was detected for the nematode Heterorhabditis bacteriophora . Gossypol did not alter nematode-imposed fitness costs. 4. Simulation modelling supported the hypothesis that nematodes in refuges may slow resistance evolution. 5. The effects of gossypol on insect mortality from nematodes and nematode reproduction differed between nematode species. Gossypol increased insect mortality caused by H. bacteriophora but did not affect mortality caused by S. riobrave . Gossypol enhanced reproduction of H. bacteriophora and decreased reproduction of S. riobrave . 6. Synthesis and applications. Our results point to the value of developing integrated pest management strategies for Bt crops that include non-Bt refuges in which entomopathogenic nematodes are used as a pest-management agent. Because entomopathogenic nematodes can magnify fitness costs of Bt resistance, their presence in refuges may delay resistance by pests to Bt crops. Moreover, entomopathogenic nematodes can serve as biological control agents thereby decreasing dependence on conventional insecticides to manage pest populations in refuges

    Virus Infection Suppresses Nicotiana benthamiana Adaptive Phenotypic Plasticity

    Get PDF
    Competition and parasitism are two important selective forces that shape life-histories, migration rates and population dynamics. Recently, it has been shown in various pathosystems that parasites can modify intraspecific competition, thus generating an indirect cost of parasitism. Here, we investigated if this phenomenon was present in a plant-potyvirus system using two viruses of different virulence (Tobacco etch virus and Turnip mosaic virus). Moreover, we asked if parasitism interacted with the shade avoidance syndrome, the plant-specific phenotypic plasticity in response to intraspecific competition. Our results indicate that the modification of intraspecific competition by parasitism is not present in the Nicotiana benthamiana – potyvirus system and suggests that this phenomenon is not universal but depends on the peculiarities of each pathosystem. However, whereas the healthy N. benthamiana presented a clear shade avoidance syndrome, this phenotypic plasticity totally disappeared when the plants were infected with TEV and TuMV, very likely resulting in a fitness loss and being another form of indirect cost of parasitism. This result suggests that the suppression or the alteration of adaptive phenotypic plasticity might be a component of virulence that is often overlooked

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie

    Ecological compatibility of GM crops and biological control

    Get PDF
    Insect-resistant and herbicide-tolerant genetically modified (GM) crops pervade many modern cropping systems (especially field-cropping systems), and present challenges and opportunities for developing biologically based pest-management programs. Interactions between biological control agents (insect predators, parasitoids, and pathogens) and GM crops exceed simple toxicological relationships, a priority for assessing risk of GM crops to non-target species. To determine the compatibility of biological control and insect-resistant and herbicide-tolerant GM crop traits within integrated pest-management programs, this synthesis prioritizes understanding the bi-trophic and prey/host-mediated ecological pathways through which natural enemies interact within cropland communities, and how GM crops alter the agroecosystems in which natural enemies live. Insect-resistant crops can affect the quantity and quality of non-prey foods for natural enemies, as well as the availability and quality of both target and non-target pests that serve as prey/hosts. When they are used to locally eradicate weeds, herbicide-tolerant crops alter the agricultural landscape by reducing or changing the remaining vegetational diversity. This vegetational diversity is fundamental to biological control when it serves as a source of habitat and nutritional resources. Some inherent qualities of both biological control and GM crops provide opportunities to improve upon sustainable IPM systems. For example, biological control agents may delay the evolution of pest resistance to GM crops, and suppress outbreaks of secondary pests not targeted by GM plants, while herbicide-tolerant crops facilitate within-field management of vegetational diversity that can enhance the efficacy of biological control agents. By examining the ecological compatibility of biological control and GM crops, and employing them within an IPM framework, the sustainability and profitability of farming may be improved

    Proton beam therapy

    Get PDF
    Conventional radiation therapy directs photons (X-rays) and electrons at tumours with the intent of eradicating the neoplastic tissue while preserving adjacent normal tissue. Radiation-induced damage to healthy tissue and second malignancies are always a concern, however, when administering radiation. Proton beam radiotherapy, one form of charged particle therapy, allows for excellent dose distributions, with the added benefit of no exit dose. These characteristics make this form of radiotherapy an excellent choice for the treatment of tumours located next to critical structures such as the spinal cord, eyes, and brain, as well as for paediatric malignancies

    Long-term Atmospheric Mercury Wet Deposition at Underhill, Vermont

    Full text link
    Section 112(m) of the 1990 Clean Air Act Amendments, referred to as the Great Waters Program, mandated an assessment of atmospheric deposition of hazardous air pollutants (HAPs) to Lake Champlain. Mercury (Hg) was listed as a priority HAP and has continued to be a high priority for a number of national and international programs. An assessment of the magnitude and seasonal variation of atmospheric Hg levels and deposition in the Lake Champlain basin was initiated in December 1992 which included event precipitation collection, as well as collection of vapor and particle phase Hg in ambient air. Sampling was performed at the Proctor Maple Research Center in Underhill Center, VT. The range in the annual volume-weighted mean concentration for Hg in precipitation was 7.8–10.5 ng/l for the 11-year sampling period and the average amount of Hg deposited with each precipitation event was 0.10 μg/m 2 . The average amount of Hg deposited through precipitation each year from 1993 to 2003 was 9.7 μg/m 2 /yr. A seasonal pattern for Hg in precipitation is clearly evident, with increased Hg concentrations and deposition observed during spring and summer months. While a clear trend in the 11-year event deposition record at Underhill was not observed, a significant decrease in the event max-to-monthly ratio was observed suggesting that a major source influence was controlled over time. Discrete precipitation events were responsible for significant fractions of the monthly and annual loading of Hg to the forested ecosystem in Vermont. Monthly-averaged temperatures were found to be moderately correlated with monthly volume-weighted mean Hg concentrations ( r 2 =0.61) and Hg deposition ( r 2 =0.67) recorded at the Vermont site. Meteorological analysis indicated the highest levels of Hg in precipitation were associated with regional transport from the west, southwest, and south during the warmer months.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44444/1/10646_2004_Article_6260.pd

    Winter curing of Prunus dulcis cv ‘Butte,’ P. webbii and their interspecific hybrid in response to Xylella fastidiosa infections

    Full text link
    Clonal replicates of Prunus dulcis cv ‘Butte,’ P. webbii and their interspecific hybrid P 63-61 were inoculated with Xylella fastidiosa strain M23 and evaluated for almond leaf scorch disease and subsequent winter curing of infections during three growing seasons. Initial inoculations established greater than 90% infection in each of the accessions, based on PCR diagnoses from petiole tissues sampled near the inoculation site. Classic leaf scorch symptoms were evident in each population during the first growing season in a controlled greenhouse environment. Trees were removed from the greenhouse during the winters to accumulate chill hours and to provide the possibility of winter curing X. fastidiosa infections. Both PCR diagnostics and in vitro cultivation were used during the second and third growing seasons to determine the persistence of X. fastidiosa in clones among the three populations. Tree survival and the degree of winter cured infections differed among the three populations, with P. webbii and P 63-61 demonstrating enhanced levels of survivorship over ‘Butte.’ After two cycles of ambient winter temperatures and subsequent growth, ‘Butte’ averaged 21.2% winter cured trees with 73.1% mean survival. Tree survival and winter cured infections were nearly 100% for both P. webbii and P 63-61, demonstrating the utility of P. webbii in almond breeding efforts aimed at reducing tree vulnerability to X. fastidiosa infections
    corecore